Tetrahedron Letters No. 2, pp 141 - 142, 1977. Pergamon Press. Printed in Great Britain.

STEREOSPECIFIC SYNTHESIS OF cis-AZOBENZENES

John A. Hyatt

Research Laboratories, Tennessee Eastman Company, Division of Eastman Kodak Company, Kingsport, Tennessee 37662

(Received in USA 29 September 1976; received in UK for publication 30 November 1976)

To date the only method for preparing <u>cis</u>-azobenzenes has been <u>via</u> photochemical equilibration of <u>trans</u>-azobenzenes and chromatographic separation of the <u>cis</u> component.¹⁻³ We report that room-temperature oxidation by active manganese dioxide of substituted anilines or, more conveniently, hydrazobenzenes, produces the corresponding <u>cis</u>-azobenzenes in excellent yield and purity. The oxidation of <u>o</u>-chloroaniline with MnO₂ at 25° afforded a 20% yield of <u>cis</u>-2,2'-dichloroazobenzene (2b). Thermal isomerization to the <u>trans</u> isomer would account for the published results.^{4,3}

It was also found that 2,2'-dichlorohydrazobenzene 3b affords cis-isomer 2b in good yield and purity upon MnO_2 oxidation. The isomeric purity of the 2b was increased to > 95% by argonpurging the MnO_2 slurry prior to the reaction and by excluding light. These measures prevent air oxidation of 3b and photoisomerization of 2b.

Pratt and McGovern⁶ have reported <u>trans</u>-azobenzenes from the MnO₂ oxidation of hydrazobenzenes carried out at > 80°. As in the case of aniline oxidations under these conditions, thermal isomerization of initially formed <u>cis</u>-azobenzenes accounts for the results reported.

In view of the novelty of these results, the MnO_2 oxidation of a series of hydrazobenzenes, 3a-3i, was carried out. As shown in Table 1, high yields of <u>cis</u>-azobenzenes were obtained $\sim \sim$ except in those systems bearing strongly conjugating <u>para</u>-substituents.

^{*}Dedicated to Prof. R. B. Woodward on the occasion of his sixtieth birthday.

***************		Product															
Compound	<u>R1</u>	<u>R2</u>	Rs	<u>R4</u>	<u>R</u> 5	Re	Compound	R ₁	<u>R</u> 2	<u>R</u> 3	<u>R4</u>	<u>R,</u>	Re	Mp	Yield, %		
æ	н	н	н	н	н	н	æ	H	H	н	H	н	H	65-67°	89		
æ	C1	н	H	C1	н	H	æ	C1	H	H	C1	н	H	91-92°	86		
Ę	H	Br	H	н	Br	H	æ	H	Br	H	H	Br	H	45–47°	98		
रुद	Н	н	C1	н	H	C1	ટ્રન	Н	H	C1	H	H	C1	66-68°	98		
3ę	OCH ₃	н	н	OCH3	н	H	æ	OCH ₃	H	H	OCH₃	H	H	96-98°	96		
₹£	н	н	CH₃	н	н	СН₃	æ	H	H	CH₃	H	H	СН₃	96-98°	97		
રેક્ર	н	н	H	н	H	0Ac	Trans	Trans-isomer produced									
æ	н	H	H	н	н	ОСН э	Trans	Trans-isomer produced									
Ħ	н	Ħ	н	н	H	NHAc	Tran	Trans-isomer produced									

Table 1. MnO₂ Oxidation of Hydrazobenzenes^a

^aCompounds <u>Ja-Ji</u> were prepared by zinc-sodium hydroxide reduction of corresponding azo compounds⁷. Oxidations were carried out by adding the hydrazobenzene to an Ar-purged, darkened slurry of 5 to 10 parts by weight of activated MnO₂^e in 10 parts by weight chloroform. Work-up by filtration, evaporation of solvent below 40° in the dark, and recrystallization afforded <u>Ja-Zf</u>. Products were characterized by IR, NMR, UV-VIS, and elemental analysis and by thermal isomerization (refluxing toluene) to the known <u>trans</u>-isomers.

References and Notes

- 1. G. S. Hartley, Nature, 140, 281 (1937).
- 2. A. H. Cook, J. Chem. Soc., 876 (1938).
- 3. A. H. Cook and D. C. Jones, J. Chem. Soc., 1309 (1939).
- 4. M. Z. Barakat et al., J. Chem. Soc., 4685 (1956).
- 5. O. H. Wheeler and D. Gonzalez, Tetrahedron, 20, 189 (1964).
- 6. E. F. Pratt and T. McGovern, J. Org. Chem., 29, 1540 (1964).
- 7. H. Snyder et al., J. Am. Chem. Soc., <u>71</u>, 290 (1949).
- 8. Either commercial (Alfa Inorganics) or Attenburrow⁹ MnO₂ may be used.
- 9. J. Attenburrow et al., J. Chem. Soc., 1094 (1952).